Factors affecting remotely sensed snow water equivalent uncertainty
نویسندگان
چکیده
State-of-the-art passive microwave remote sensing-based snow water equivalent (SWE) algorithms correct for factors believed to most significantly affect retrieved SWE bias and uncertainty. For example, a recently developed semi-empirical SWE retrieval algorithm accounts for systematic and random error caused by forest cover and snow morphology (crystal size — a function of location and time of year). However, we have found that climate and land surface complexities lead to significant systematic and random error uncertainties in remotely sensed SWE retrievals that are not included in current SWE estimation algorithms. Joint analysis of independent meteorological records, ground SWE measurements, remotely sensed SWE estimates, and land surface characteristics have provided a unique look at the error structure of these recently developed satellite SWE products. We considered satellite-derived SWE errors associated with the snow pack mass itself, the distance to significant open water bodies, liquid water in the snow pack and/or morphology change due to melt and refreeze, forest cover, snow class, and topographic factors such as large scale root mean square roughness and dominant aspect. Analysis of the nine-year Scanning Multichannel Microwave Radiometer (SMMR) SWE data set was undertaken for Canada where many in-situ measurements are available. It was found that for SMMR pixels with 5 or more ground stations available, the remote sensing product was generally unbiased with a seasonal maximum 20 mm average root mean square error for SWE values less than 100 mm. For snow packs above 100 mm, the SWE estimate bias was linearly related to the snow pack mass and the root mean square error increased to around 150 mm. Both the distance to open water and average monthly mean air temperature were found to significantly influence the retrieved SWE product uncertainty. Apart from maritime snow class, which had the greatest snow class affect on root mean square error and bias, all other factors showed little relation to observed uncertainties. Eliminating the drop-in-the-bucket averaged gridded remote sensing SWE data within 200 km of open water bodies, for monthly mean temperatures greater than 2 -C, and for snow packs greater than 100 mm, has resulted in a remotely sensed SWE product that is useful for practical applications. D 2005 Elsevier Inc. All rights reserved.
منابع مشابه
Scanning multichannel microwave radiometer snow water equivalent assimilation
[1] Accurate prediction of snowpack status is important for a range of environmental applications, yet model estimates are typically poor and in situ measurement coverage is inadequate. Moreover, remote sensing estimates are spatially and temporally limited due to complicating effects, including distance to open water, presence of wet snow, and presence of thick snow. However, through assimilat...
متن کاملEstimating the spatial distribution of snow water equivalent in the world's mountains
Estimating the spatial distribution of snow water equivalent (SWE) in mountainous terrain is currently the most important unsolved problem in snow hydrology. Several methods can estimate the amount of snow throughout a mountain range: (1) Spatial interpolation from surface sensors constrained by remotely sensed snow extent provides a consistent answer, with uncertainty related to extrapolation ...
متن کاملMountain hydrology of the western United States
C31A-0275.Dozier, J., and T. H. Painter (2004), Multispectral and hyperspectral remotesensing of alpine snow properties, Annu. Rev. Earth Planet. Sci., 32, 465–494, doi:10.1146/annurev.earth.32.101802.120404.Dressler, K. A., G. Leavesley, R. C. Bales, and S. Fassnacht (2004),Streamflow estimation from hydrologic model assimilation of remotelysensed snow information in snowme...
متن کاملDownscaling Snow Cover Fraction Data in Mountainous Regions Based on Simulated Inhomogeneous Snow Ablation
High-resolution snow distributions are essential for studying cold regions. However, the temporal and spatial resolutions of current remote sensing snow maps remain limited. Remotely sensed snow cover fraction (SCF) data only provide quantitative descriptions of snow area proportions and do not provide information on subgrid-scale snow locations. We present a downscaling method based on simulat...
متن کاملImproving Streamflow Prediction Using Remotely-Sensed Soil Moisture and Snow Depth
The monitoring of both cold and warm season hydrologic processes in headwater watersheds is critical for accurate water resource monitoring in many alpine regions. This work presents a new method that explores the simultaneous use of remotely sensed surface soil moisture (SM) and snow depth (SD) retrievals to improve hydrological modeling in such areas. In particular, remotely sensed SM and SD ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005